
A Simple Model of Agile Software Processes
– or –

Extreme Programming Annealed
 Glenn Vanderburg

2240 Dampton Dr.
Plano, TX 75025

glv@vanderburg.org

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – software process
models (e.g., CMM, ISO, PSP), life cycle, programming teams.

General Terms
Management.

Keywords
Extreme Programming, Agile software development, Process
customization.

INTRODUCTION
 “If you built a piece of software that was as tightly coupled as
Extreme Programming, you’d be fired.”

It was late 1999, and I was sitting at lunch with Pragmatic Dave
Thomas and the rest of the North Texas XP interest group. It’s
not unusual for Dave to make provocative statements like that, but
this time I was dumbstruck. From the beginning, I had liked
Extreme Programming’s redundancy and interconnectedness—it
seemed like a strength of the process to me. Plus, there were
some easy answers. “But people aren’t software components”
was one I can remember almost voicing.

And yet there was a deeper point Dave was making, one that I
didn’t have an answer for. He was right. The same characteristic
that I appreciated in XP, I would decry in a software design. Glib
answers notwithstanding, I could see how that tight coupling
could have a strong negative impact for a software process, too.
For any process, Extreme or not, to be really useful and successful
in a variety of situations for different teams, we have to
understand how to tailor it. Every project team inevitably
augments, trims, or otherwise tailors the process they set out to
use. The problem is that most of the time we do it blindly. Oh,

sure … we may have an idea what problem we’re trying to solve
by adding some new practice, or some reason that we don’t need a
particular artifact. But process elements don’t exist in isolation
from one another. Typically, each provides input, support, or
validation for one or more other process elements, and may in turn
depend on other elements for similar reasons.

Is this internal coupling as bad for software processes as it is for
software? Dave, Chris Morris, and I spent some time discussing
that question, but soon we all became distracted by other things.
After a while, though, I found myself thinking about the question
again. I think it’s an important question not just for Extreme
Programming, but for all software processes. Until we understand
how process elements depend upon and reinforce one another,
process design and tailoring will continue to be the hit-or-miss
black art that it is today.

Extreme Programming is an excellent subject for studying internal
process dependencies. One reason is that it acknowledges those
dependencies and tries to enumerate them (Kent Beck’s Extreme
Programming Explained devotes a chapter to explaining many of
them[1]). Additionally, XP is unusual in covering not just the
management of the project, but day-to-day coding practices as
well. It provides an unusually broad (if not necessarily complete)
picture of the software development process.

TIGHTLY COUPLED
The published literature about Extreme Programming is
incomplete in several ways. If you follow discussions of how
successful teams actually apply XP, you’ll see that there are many
implicit practices, including the physical layout of the team
workspace and fixed-length iterations. Likewise, since
relationships between practices are more difficult to see than the
practices themselves, it’s probable that there are unidentified
relationships between the practices—perhaps even strong, primary
dependencies.

However, just diagramming the twelve explicit XP practices and
the relationships documented in Extreme Programming Explained
shows the high degree of interconnectedness, as seen in Figure 1.

© ACM, 2005. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of
the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, {1-59594-031-0,
2005}
http://doi.acm.org/10.1145/1094811.1094854

Figure 1. The original 12 practices and their dependencies.

Rather than add additional complications to the problem right
from the start, I decided to focus on the relationships Beck
described. The one change I made from the beginning was to split
the “testing” practice into “unit testing” and “acceptance testing.”
They are different activities, and the XP literature emphasizes the
differences in their purpose, timing, and practice, so it seemed
appropriate to treat them as distinct practices. Therefore, instead
of the original twelve practices of Extreme Programming, this
analysis deals with the thirteen shown in Figure 2.

Figure 2. The thirteen practices.

Once the complex web of dependencies is shown so clearly, it’s
easy to understand Dave Thomas’ point and the challenge implicit
in it. Are those interdependencies worth their cost? Given that
there are good reasons to customize a chosen software process,
can you even start to do it sensibly in an XP context? If you have
to omit or modify one of the XP practices, how can you
understand what you’re really losing? Can you do a reasonable
job of choosing another practice (or set of practices) to fill all the
roles, primary and secondary, that the original fills? If you notice
a problem on your project that XP isn’t adequately addressing,
how can you fit a new practice into this web?

That became my goal—understanding these dependencies well
enough to permit informed adjustment. The point is not to
“decouple” Extreme Programming. I believe those
interdependencies are beneficial. Software processes involve
humans, with all of our failings, weaknesses, and inconsistencies.
We have good days and bad days, we follow processes
inconsistently and imperfectly, and we overlook things:

requirements, scenarios, errors, better designs, and things our
tools can do for us. Some process redundancy is invaluable in the
face of such flawed workers.

Many processes try to deal with these problems by strengthening
the practices, adding enforcement steps or inspectors, or by
adding practices solely for the purpose of redundancy. But such
measures are costly in terms of time and effort, and they probably
also harm team morale and cohesion. One strength of the XP
approach is that the practices play multiple roles. In most cases
when an XP practice serves to compensate for the flaws of
another practice, the redundant compensation is merely a
secondary role of the practice. This helps keep the number of
practices to a minimum, and has the added benefit of using core
team members in enforcement roles without making them seem
like “enforcers.”

Without some coupling, even in software designs, nothing will
ever get done. The trick is to build relationships between
components when they are appropriate and helpful, and avoid
them otherwise. The coupling within XP is only harmful if it
makes the process difficult to change. If we can understand the
relationships well enough, perhaps they would not be barriers to
making appropriate changes to the process.

TEASING OUT THE TANGLES
Is there some underlying structure to these dependencies that will
make them more comprehensible? Are there (in the language of
graph theory) strongly connected subcomponents that have
weaker connections between them? Alternatively, are the
relationships ordered in some way? When Dave, Chris, and I
began discussing this problem, I instinctively felt that there was
some structure that was not yet understood. I began drawing
dependency graphs, moving nodes around, looking for some hint
of that structure.

Dave pointed out that what I was trying to do was similar to the
metallurgical process of annealing, where a metal is heated and
then slowly cooled to strengthen it and reduce brittleness. The
process allows the molecules of the metal, as it cools, to assume a
tighter, more nearly regular structure. Some automated graph-
drawing algorithms employ a process of simulated annealing,
jostling the nodes of the graph randomly and adjusting position to
reach an equilibrium state that minimizes the total length of the
arcs in the graph[6].

Assuming there is a structure to those dependencies, how could I
discover it? Graph drawing algorithms didn’t help, and neither
did more ad hoc graph layout methods. Figure 2 is, in fact, the
cleanest two-dimensional arrangement I was able to achieve with
all thirteen practices and their dependencies.

Neither was it particularly helpful to try sorting the graph
topologically. It’s full of cycles. After that, I tried to visualize
clusters of dependencies by arranging the practices in a circle and
changing the order to bring related closely related practices close
together (this amounted to a kind of circular topological sort). In
the process I did notice that there were ways to arrange the
practices so that only a few of the dependencies—9 out of a total
of 38—skipped more than three intervening practices (as shown in

Figure 3). In that arrangement, most of the dependencies were
between nearby practices. That could have been coincidental, but
I began investigating that particular ordering. What did practices
that were close to each other on the circle have in common? What
distinguished practices on opposite sides of the circle?

Figure 3. Before and after a "circular topological sort."

What I discovered was that there were often—not always—
particularly strong relationships between practices that operate on
similar scales. The low-level programming practices depend on
each other more than they depend on the product-scale practices
like the planning game and short releases. That doesn’t seem
particularly startling, but for want of any other ideas, I began
exploring the relationships between practices and scales.

There are nine practices that seem to operate at particular scales,
as illustrated in Figure 4. Each of these practices seems to
provide feedback about particular kinds of decisions, from very
small to the large, sweeping decisions. I am sure there are many
arguments to be had over the particular ordering, but the basic
trend is clearly from small scales to large.

Figure 4. Scale-defined practices

Of course, that leaves four other practices out, which is a problem
when you’re trying to understand all of the practices and how they
relate. But for now, we may be onto something, and perhaps we
can make sense of the others later.

Armed with this observation about scales, I began to see that not
all of the dependencies within XP are of the same kind. For
example, consider the bidirectional dependency between pair
programming and unit testing. How does pair programming help
unit testing? It strengthens unit testing by suggesting good tests,
and by encouraging the unit-testing discipline. It also helps to
ensure that the unit-testing process is dealing with well-designed
code, making the testing process itself more efficient and
productive.

Now turn it around. How does unit testing support pair
programming? It guides the programmers by helping them
structure their work, setting short-term goals on which to focus. It
guides their design work as well; unit testing has well known
benefits as a design technique. It also defends against
shortcomings of pair programming (even two minds don’t write
perfect code) by catching errors.

Do the relationships at larger scales look similar? Another
bidirectional dependency on a larger scale exists between on-site
customer and acceptance testing. The relationship between the
two is clearly different in details from the one we just explored
between pair programming and unit testing, but it seems to me to
be similar in terms of the respective roles of the two practices.
Having an on-site customer strengthens acceptance testing by
guiding the development of tests, and by helping maintain
correspondence between stories and tests. In the opposite
direction, acceptance testing guides feature development (again by
providing goals) and defends against the weaknesses of on-site
customer, providing a concrete, executable record of key
decisions the customer made that might otherwise be
undocumented. It also provides a testbed for the consistency of
customer decisions.

At all of these scales, the characteristics of the dependencies seem
similar. Smaller-scale practices strengthen larger-scale practices
by providing high-quality input. In other words, smaller-scale
practices take care of most of the small details so that the larger-
scale practices can effectively deal with appropriately scaled
issues. In the reverse direction, larger-scale practices guide
smaller-scale activities, and also defend against the mistakes that
might slip through.

Does this help make sense of the four remaining practices?
Refactoring, forty-hour weeks, simple design, and coding
standards seem to all have a strengthening role. One way of
looking at the strengthening dependencies is to see them as noise
filters. The “noise” I’m speaking of is (to use Fred Brooks’
terminology[3]) the accidental complexity: the extra complexity
in our systems over and above the essential complexity that is
inherent in the problem being solved. In a software system, that
noise can take many forms: unused methods, duplicate code,
misplaced responsibility, inappropriate coupling, overly complex
algorithms, and so on. Such noise obscures the essential aspects
of the system, making it more difficult to understand, test, and
change.

The four practices that operate independent of scale seem to be
aimed at reducing noise, improving the overall quality of the
system in ways that allow the other practices to be more effective.
Refactoring is an active practice that seeks to filter messy code

from the system whenever it is found. Simple design and coding
standards are yardsticks against which the system’s quality can be
measured, and help guide the other practices to produce a high
quality system. (It’s arguable whether those are actually
“practices” at all; rather, they’re criteria we use to guide the other
practices.) Finally, forty-hour week helps eliminate mistakes by
reducing physical and mental fatigue in the team members. The
four noise-filtering practices, along with their interdependencies,
are shown in Figure 5.

Figure 5. Noise filters.

Those four noise-filtering practices help many of the other
practices to operate more effectively by maximizing clarity and
reducing complexity in the code. They help minimize the
accidental complexity in the system in favor of the essential
complexity. Many of the other practices perform similar functions
(albeit more limited in scale) in their upward strengthening
relationships with other practices.

So far, so good. We have a set of four noise filters, and nine other
practices that operate in a rough hierarchy of scales, strengthening
the practices at larger scales while defending against mistakes that
slip through the lower-scale activities.

A FEEDBACK ENGINE
There’s more going on, though. The nine practices are
characterized not only by the scale of entity they work with;
additionally, they function primarily within a certain span of time.
Not surprisingly, the practices that operate on small-scale things
also operate very quickly. The correspondence between practices
and time scales is shown in Figure 6. Again, while we may
quibble about the details of this ordering, the trend from smaller to
larger increments is clear, as is the general correspondence with
the earlier ranking from Figure 4.

We see, therefore, that the practices that deal with small-scale
entities also operate very rapidly, whereas practices that deal with
larger-scale issues take longer to iterate. As for the other
practices—the noise filters—just as they are independent of scale,
they also seem to function across small or large timeframes, as
appropriate.

Figure 6. Practices and time scales.

There’s a structure here that’s comprehensible, unlike the original
web of undifferentiated dependencies. I assert that the nesting of
XP’s feedback loops is the fundamental structural characteristic of
Extreme Programming. All of the explicit dependencies between
individual practices that have been identified by Beck and
others—while important—are natural consequences of this overall
structure, and not independent features that need to be managed.

However, we’re still not to the point of being able to use this
structure to help us tailor the process sensibly. For that, we must
turn to traditional models of software processes and understand
where this model fits into them.

Cost of Feedback
Barry Boehm’s cost of change curve is one of the linchpins of
software engineering theory and practice[2]. Boehm’s
observations of projects led him to conclude that, as projects
advance through their lifecycles, the cost of making necessary
changes to the software increases, and does so exponentially.

This observation led to a generation of processes that were
designed to make all changes—all decisions—as early in the
process as possible, when changes are cheaper. There are many
things wrong with such strategies, but one in particular concerns
me here. Many in the agile community have observed that
Boehm’s study dealt primarily with projects using a waterfall-
style process, where decisions (in the form of requirements
gathering, analysis, and design) were made very early in the
project. Those decisions were often carefully scrutinized to
identify mistakes, but the only true test of software is to run it.
(Recall Knuth’s famous warning to Peter van Emde Boas:
“Beware of bugs in the above code; I have only proved it correct,
not tried it.”) In classic waterfall projects, such empirical
verification typically didn’t happen until near the end of the
project, when everything was integrated and tested. Agile,
iterative processes seem to enjoy a shallower cost-of-change
curve, suggesting that perhaps Boehm’s study was actually
showing how the cost of change increased as a function of the

length of the feedback loop, rather than merely the point in the
project lifecycle.

As I mentioned, that analysis of the cost of change curve is not
new to the agile process community. But I believe understanding
XP’s structure sheds new light on how the process manages that
curve. With its time- and scale-sensitive practices and
dependencies, XP is an efficient feedback engine. Its nested
feedback loops, each one optimized for the size of decision
involved, don’t just hasten feedback; they do so in very cost-
effective ways. Very small decisions, such as those made when
writing statements and methods in a program, are very cheap to
validate, so XP projects get that feedback continuously, minute-
by-minute, through interactions within programming pairs and
through unit testing. Larger decisions, such as the selection of
features to help solve a business problem and the best way to
spend project budget, are quite costly to validate. Therefore XP
projects validate those decisions somewhat more slowly, through
day-to-day interaction with customers, giving the customer
control over each iteration’s feature choice, and by providing a
release (for production use, if desired) every few weeks at most.
At every scale, Extreme Programming’s practices provide
feedback in a way that balances timeliness and economy.

(That XP relies heavily on feedback is also old news; many
people have made that observation, including Beck and Alistair
Cockburn[4]. What isn’t widely known is how the notion of
nested feedback loops serves as a model for understanding the
dependencies within XP.)

Defense in Depth
Another traditional view of the purpose and function of a software
process—closely related to managing the cost of change—is that
it is defensive, guarding against the introduction of defects into the
product.

Our model of XP’s inner structure also makes sense when
measured against this view. In fact, it resembles the timeworn
security strategy of defense in depth. Extreme Programming can
be seen as a gauntlet of checks through which every line of code
must pass before it is ultimately accepted for inclusion in the final
product. At each stage, it is likely that most defects will be
eliminated … but for those that slip through, the next stage is
waiting. Furthermore, the iterative nature of XP means that in
most cases code will be revisited, run through the gauntlet again,
during later iterations.

One important difference between Extreme Programming’s
defensive strategy and those of more traditional processes is the
notion of what constitutes a defect. Bugs, of course, are viewed
by both process models as defects to be avoided. Traditional
processes see a second big category of defects: missed or incorrect
requirements. XP, on the other hand, like other agile processes,
sees changing requirements as inevitable, and even as a business
advantage. Instead of working so hard to guard against missed
requirements, XP actively guards against another kind of defect
altogether: unnecessary complexity that will inhibit change. The
practices I’ve called noise filters are specifically aimed at keeping
those defects at bay.

OTHER PROCESSES
I’ve focused on Extreme Programming primarily because XP is
unusual in two respects: mandating practices at all scales of the
development process, and acknowledging (and even enumerating)
its internal dependencies. It was those characteristics, in fact, that
prompted Dave Thomas to make the observation that started me
on this path.

I don’t believe, however, that this structural pattern is peculiar to
Extreme Programming. Many agile processes identify “feedback”
as a guiding principle, and explicitly provide opportunities to
gather feedback.

Take Scrum, for example. The overall structure of Scrum is a
series of iterations, of course—such iterations are a central
feedback mechanism used in all agile processes. Scrum’s
iterations take the form of 30-day “sprints.” After each sprint
comes a “sprint review,” designed to understand how successful
the sprint was and make adjustments for the next sprint. Within
the sprint, the core feedback mechanism is the daily scrum
meeting. It’s designed to be inexpensive (requiring just a few
minutes from the team each day) but effective. The team itself
can respond to issues identified in the scrum meeting; the fact that
feedback is gathered in a whole-team setting such as the scrum
meeting probably amplifies its effect.

As in XP, Scrum’s feedback mechanisms are sized to match the
scale of artifact being examined. Sprints (and the accompanying
sprint planning and review exercises) are costly, large-scale
cycles, and are focused in large part on overall quality, the
suitability of the solution to the task, and overall team velocity
(averaged over the course of a 30-day sprint). They are so costly
that they are carefully controlled; Scrum strongly advises against
reducing the length of sprints, and aborting a sprint in the middle
is an extraordinary event, with carefully defined conditions.
Scrum meetings, on the other hand, are inexpensive, frequent, and
explicitly focused on the previous day and the next—and
therefore on the day-sized tasks: individual features, test
completion, development environment issues, and so on.

Unlike XP, Scrum doesn’t explicitly have thorough coverage of
feedback at many different scales. However, most Scrum teams
adopt ad hoc practices to help them monitor the health of the
project during sprints. One popular example is the use of an
automated build-and-test server, which is a way of providing
hourly or daily feedback about unit correctness and interfaces
between units and components.

Scrum’s creators explicitly acknowledge the central role of
feedback (although the role of scale is implicit):

Scrum employs the empirical process control model.
Scrum regularly inspects activities to see what is
occurring and empirically adapts activities to produce
desired and predictable outcomes. [...] Empirical process
control models are elegantly simple. They employ
feedback mechanisms to monitor and adapt to the
unexpected, providing regularity and predictability[7].

In addition, Scrum’s creators focus on the problem of noise in a
software project:

In this context, the term “noise” refers not to a sonic
phenomenon, but to the unpredictable, irregular, nonlinear
parts of system development. [...] When noise-to-signal
ratio is too high, the sound of what I want to hear is
obscured by the sound of what I don’t want to hear, or the
noise[7].

The large amount of noise in modern system development
projects is part of the motivation for Scrum’s focus on an
empirical process-control model, focused on feedback
mechanisms.

THE AGILE METHODOLOGIST
Armed with these observations, I believe we can make sensible,
informed decisions about how to tailor Extreme Programming. If,
for some reason, you are unable to implement one of XP’s
practices on your project, what do you put in its place?

If it’s one of the scale-dependent process, replace it with another
practice that’s designed to provide feedback on roughly the same
scale of decisions, more or less as rapidly, for roughly the same
cost. You should not have to worry about the details of how it
supports adjacent practices; it will fill that role naturally, by virtue
of providing feedback at the appropriate scale. It’s unlikely that
you’ll find an exact match for one of the standard practices; you
can expect the replacement to work a little more slowly, or be a
little more costly, or to let a few more defects slip through, or be a
less effective guide for the practices at smaller scales. You may
need to strengthen your execution of the practices at adjacent
scales to compensate a bit … but your first try is likely to work
well enough to avoid major difficulties, providing time to learn
the weaknesses of the new practice and react appropriately.

As an example, pair programming frequently presents problems
for teams, whether because of geographic separation,
inappropriate facilities, or skeptical management. How would
you choose new practices to compensate for the loss of pair
programming?

It’s easy to see why the traditional answer, the group code
inspection, is unsuitable. It is too costly and too slow, providing
feedback days (or even weeks) later about much quicker, smaller-
scale decisions. Instead, since a pair can’t work together during a
task, the team might try bracketing the task with shorter bursts of
collaboration. A short design session before the task could
provide feedback about the proposed strategy for implementing
the task. Upon task completion, it would be good to have a quick,
one-person review of the completed work, focusing on general
style (for the production code) and thoroughness (for the unit
tests). In this way, team members could receive rapid,
economical feedback about the key decisions made during the
implementation of a single small task: have coding standards been
followed? Is the design simple and straightforward? Are the unit
tests thorough?

What if you need to replace one of the noise-filtering practices?
Those are a lot tougher to do without. A project can suspend them
for a while, incurring “technical debt”[8], but the debt must soon
be paid off or it will become a barrier to change. I’m not sure any
agile project can live without these four practices for long.

Unnecessary complexity is a defect to avoided, and not only does
it inhibit change, it also breeds additional, more obvious defects.
Agile teams need to think clearly, write consistent code, and keep
the design simple. And in the absence of perfect requirements,
perfect people, and perfect practices, extra complexity will creep
in, requiring refactoring. This analysis has confirmed, for me, an
intuition that those four practices are essential for any agile
project.

The process may also need some tinkering when things aren’t
going as well as they should be. Perhaps team velocity is slowing,
or older acceptance tests begin failing as new features are
developed. How can a team augment the process to fill the gap?

The first tactic should probably be to examine the existing
practices, to see if they’re being applied properly. But if a new
practice of some sort is required, it should be constructed to fit
into the existing scale hierarchy. Defects—possibly in the form of
extra complexity—are creeping in. At what scale? A new
practice should provide hard-to-ignore feedback about
appropriately scaled decisions, in a timeframe that’s also
appropriately scaled.

Alistair Cockburn recommends what he calls “just-in-time
methodology construction”[4]. A team, he says, should actively
watch their project for signs of trouble, changing their process as
needed to address issues as they arise. The Unified Process
similarly recommends that UP be “configured” for each
project[5]. Risks should be identified and then the UP roles,
activities, and artifacts that aren’t needed to address those risks
can be dropped from the process for the current project.

Cockburn and the designers of UP are right: we need to tailor our
processes. Unfortunately, there is very little guidance about how
to do that wisely—and in the absence of such guidance, most
teams end up using processes that are inadequate or far too costly,
or (worst of all) both of those things.

Extreme Programming has some tight coupling between its
practices. But I’ve come to believe that my instinct was right: the
redundant, “organic” interconnectedness of XP is the source of a
lot of its robustness and speed. All those dependencies between
practices have a structure that is actually fairly simple. (I believe
that structure can help us identify previously unidentified
relationships, although I have not pursued that analysis in the
current essay.) That structure, once identified, provides crucial
guidance for those who need to tailor and adjust the software
process.

The feedback engine, with its nested feedback loops, is an
excellent model for a process designed to manage the cost of
change and respond efficiently to changing requirements. This is
the essence of agility: letting go of the slow, deliberate decision-
making process in favor of quick decisions, quickly and
repeatedly tested. The feedback loops are optimized to validate
decisions as soon as possible while still keeping cost to a
minimum. Finally, that multi-scale hierarchy of feedback loops,
once recognized, provides crucial guidance when we need to tailor
and adjust the software process.

ACKNOWLEDGMENTS
I’m grateful to Dave Thomas for the comment that got me started
thinking about this issue, and to him, Chris Morris, and Tom
McGraw for crucial early discussions. Deborah Vanderburg,
Mike Clark, and David Butler performed valuable, careful reviews
of drafts of this essay, as did Brian Marick and the anonymous
reviewers.

I recently learned that William Wake has also discussed the
relationship between XP practices and time scales[9].

REFERENCES
[1] Beck, K. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 1999.

[2] Boehm, B. Software Engineering Economics. Prentice Hall,
Englewood Cliffs, NJ, 1981.

[3] Brooks, F. No Silver Bullet. Reprinted in The Mythical
Man-Month (Anniversary Edition). Addison-Wesley,
Boston, 1995.

[4] Cockburn, A. Agile Software Development. Addison-
Wesley, Boston, 2002.

[5] Jacobson, I., Booch, G., and Rumbaugh, J. The Unified
Software Development Process. Addison-Wesley, Reading,
MA, 1999.

[6] Kirkpatrick, S., Gelatt Jr., C.D., and Vecchi, M.P.
Optimization by Simulated Annealing. Science, 4598 (13
May 1983), 671–680.

[7] Schwaber, K. and Beedle, M. Agile Software Development
with Scrum. Prentice Hall, Upper Saddle River, NJ, 2002.

[8] Smith, D. Technical Debt. Portland Pattern Repository.
January 20, 2005. <http://c2.com/cgi/wiki?TechnicalDebt>

[9] Wake, W. Extreme Programming as Nested Conversations.
Methods and Tools, 10:4 (Winter 2002), 2–12.
<http://www.methodsandtools.com/PDF/dmt0402.pdf>

